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Navier-Stokes Solution to the Flowfield
Over Ice Accretion Shapes

J. N. Scott,* W. L. Hankey,} F. J. Giessler,} and T. P. Gielda§
University of Dayton Research Institute, Dayton, Ohio

The numerical simulation of flow about ice accretion shapes has been accomplished by solving the Navier-Stokes
equations using MacCormack’s explicit finite-difference scheme. The computations were performed on a vector
processor computer. The influence of turbulence is taken into account by means of an algebraic eddy-viscosity model.
In order to optimize the grid spacing and to achieve near orthogonality at the surface of the complex ice shapes, a
hyperbolic grid generation scheme is utilized. Particular attention is given to the heat-transfer process for which good
agreement between the numerical and experimental results is achieved. In addition, liquid water droplet trajectories
are computed within the flowfield along with the resulting impingement efficiencies using a parabolized Navier-Stokes

formulation.

Nomenclature
A =area
C, = drag coefficient of droplet
d = droplet diameter
f =drag of droplet/unit mass
g = gravity acceleration
h = heat transfer coefficient
J = Jacobian of transformation
k = thermal conductivity
m = droplet mass
n = surface outer normal
Nu = Nusselt number
p = pressure
q = heat transfer rate
 Re, = Reynolds number for droplet
S = frontal area of droplet
T = temperature
t =time
V = velocity of air

V, = velocity of droplet

x-y = Cartesian coordinates

B =local impingement efficiency

u = viscosity of air

£-n = coordinates in computational plane
p = air density

p, = liquid water content
p,, = water density
T = stress tensor

Introduction

HE national interest in aircraft icing receded in the 1950’s

due to the introduction of the jet engine (with its higher
cruise altitude) and radar. Interest has recently returned to this
area for both military and civilian aviation.

The condition of ice accretion arises when an aircraft en-
counters a metastable cloud containing supercooled liquid
droplets. Two different classes of icing have been identified:
rime and glaze. Rime ice occurs at low temperatures (below
10°F) when ice forms immediately upon droplet impact. The
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convection process is sufficient for the air to remove the high
latent heat of fusion of the droplets that are changing phase
from liquid to solid. The accreted shape on the airfoil, there-
fore, resembles the impingement efficiency distribution profile.
Glaze ice occurs at a higher temperature (25-32°F) and is
formed when droplets run a certain distance from the point of
impact before freezing. Glaze is the worst situation in that a
liquid-ice mixture flows over the leading edge of an airfoil and
forms ice “horns.” These protrusions act as spoilers that in-
crease drag and decrease lift.

The aerothermodynamic phenomenon at the surface is one
of the most complex encountered in fluid mechanics.! The in-
terface experiences energy exchange due to kinetic energy from
droplet impact, heat transfer by convection and phase change,
enthalpy differences in the air, water and ice flows, and mass
transfer by evaporation (Fig. 1).

To date, analytical studies have failed to provide techniques
that accurately predict the ice accretion rates encountered in
icing tunnels. However, within the past few years a tool has
been developed that has the potential for simulating the icing
process. This tool lies in the numerical solution of the time-
dependent Navier-Stokes equations.? The dynamic equations
of the water droplets are added to these equations for the air
flow and simultaneously solved to simulate ice accretion.

Technical Approach

It is desirable to develop a computer program that will pos-
sess the capability to solve the complete icing process involving
the air-droplet mixture with phase change on the surface. This
flowfield program would also include the computation of the
aerodynamic lift and drag, heat-transfer distribution, droplet
impingement efficiency, etc. The present approach develops the
overall strategy to achieve these goals.

The first issue to address is the unsteady nature of the phe-
nomenon. Although the ice shape configuration changes with
time, the rate of growth is slow (10~* ft/s) compared to the
flight speed (200 ft/s); therefore, a quasisteady analysis is ap-
propriate. This approach involves computation of Navier-
Stokes solutions for a sequence of shapes starting from the
original configuration, computing the growth rate, advancing
the configuration over a fixed time interval recomputing a new
growth rate, etc., until the final shape is attained.

A primary element of this approach is the accurate computa-
tion of the heat transfer over a roughened surface of complex
geometry. A series of experimental heat-transfer test results>®
are used to assist in the validation of the computational fluid
dynamic (CFD) methods. (Thus, the numerical approach is
used to compute the flowfield about these ice shapes with resul-
tant heat transfer.)
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The configurations computed are models of ice accretion
shapes formed on a circular cylinder in the NASA Lewis Icing
Research Tunnel (IRT). These shapes are for 2, 5, and 15-min
models of glaze ice and a 15-min accumulation of rime ice. An
existing Navier-Stokes program was modified to compute the
flowfield over these four shapes.

Governing Equations

The governing equations are obtained by adding body forces
to the Navier-Stokes equations to account for the drag of the
water droplets and surface roughness. In addition, a continuity
and momentum equation is required to develop the trajectory
equations for the droplets.

Air equations:

op

V-pV=0
az+ p
DV
p-]57=V-g—p,,f
De
=Vt - V+4q) — vV
p Dt \% ( L + q) ‘2p4f

Water droplet equations:

dp
atp + V ) pPVp =0
ov
—at” +V, VV,=g+f
where
CppS
f= ZoPo |V — V,|(¥ — V,) = droplet drag/unit mass

2m

The water droplets are assumed to be uniform spheres of di-
ameter d. Cloud physics experiments indicate that the diameter
varies between 5 and 50 ¢ depending on the air temperature
and liquid water content.” Often an average diameter of 20 p is
used in ice accretion studies. Therefore,

pS  prnd?/4 3p

and the drag coefficient depends on the Reynolds number®
Cp = Cp(Re,)

A curve fit of this classic plot produces the following rela-
tionships:®

24
Re, < 1C, = Re. (Stokes flow)
d

~ 24
1 < Re, <400C, = —
€a <300 = Re10.646

400 <Re,<3x 105 Cp=0.5

These values are used in the computation of the water droplet
trajectories.

Grid Generation

The grid was developed using the hyperbolic grid generation
scheme of Steger and Sorenson.’® This technique appears
ideally suited for computing grids for the irregular shapes of ice
configurations. This method first requires a detailed descrip-
tion of the surface geometry. The program produces an orthog-
onal, body-oriented grid (that is preferable in CFD
computations) and clusters the grid points near the surface.
The hyperbolic method has little control over the final exterior
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Fig. 1 Sketch of interface phenomena.
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Fig. 2 Fifteen-minute glaze grid.

grid shape, which is perfectly acceptable for external flow prob-
lem (but unacceptable for internal flows). An example grid for
a typical ice shape is shown in Fig. 2.

Boundary Conditions

Far Field

At the far field boundary, the following conditions are pre-
scribed:

Vs Toos Py

p, =LWC = liquid water content of cloud

V,=Ve
Surface
At the surface, the following conditions prevail:
0
V=0, T, specified, L 0
on

Turbulence Model

The turbulence is simulated by the algebraic eddy-viscosity
model developed by Baldwin and Lomax.!! This turbulence
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model is incorporated into the computational procedure near
the surface. The procedure used for the present calculations
assumes the presence of two layers. The Prandtl-van Driest
formulation is used for the inner layer: '

& = pt3o|

owl-en30)]

The magnitude of the vorticity |w| is:

o] =

where

ou oo

dy Ox

y+=|:%]%y

The distance normal to the surface is y, 4+ = 26 is the sublayer
thickness, k = 0.40 is the von Karman constant, and the sub-
script w denotes values at the surface.

The model switches from the van Driest formulation to the
formulation for the outer region at the smallest value of y for
which the inner and outer values of the eddy-viscosity are equal
(i.e., & = g&). The formulation for the outer layer is given by

E=p KCch max Vi maxF KLEB

_._y+
Fmax =ymax|w| [1 —CXp( A+ >]

The value of y at which F,,, occurs is ypa,-

where

Frrep=[1+ 5~5(CKLEBy/ymax)6] -1

K =0.0168, C,, =16, Cxres =03

Solution of the Water Droplet Equations

In the past, droplet trajectory equations have been solved
using the Lagrangian method. In this investigation an Eulerian
method was used for two reasons: first, to make the droplet
system of equations compatible with the airflow equations and,
second, to include the variation of the liquid water content (p,)
throughout the flowfield.

The droplet equations are similar in form to the airflow
equations with the exception that the stress tensor is zero. This
difference, however, changes the mathematical character of the
partial differential equations from elliptic to hyperbolic. This
means that the hyperbolic equations may be marched in space
using a modified Parabolized Navier-Stokes code (PNS).!2

To apply a space-marching technique correctly, the eigenval-
ues of the governing equations must be real (indicating the
character of the equations is hyperbolic). ’

The governing equations in divergence form are written as

E,+F,=H

where, E, F, and H are defined by

pu pv 0
E = |pu? F = |puw H=|—fx
puv pv? —fy

In order to perform the eigenvalue analysis,'® the E and F
vectors are factored such that

O0E

E,=—U,=AU,
oU
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where
o
U=|u
v

The 4 and B matrices are found to be

u p O
A=|0 pu O
0 0 pu
v 0 O
B=0 pv O
0 0 pv

Applying the above factorization, the governing equation can
be rewritten as

U,+A7'BU,=A"'H
To determine the character of this equation set it is necessary

to find the eigenvalues of the matrix 4 ~'B, which was found to
b . ,

v o—pv p

u? u

4-'B=lo 2 o
u

o o 2

u

The characteristic equation of the matrix 4 1B is deter-
mined from

det[4 B — Al =0

-

The eigenvalues of the matrix 4 ~!B are defined as the roots of
the characteristic equation. Therefore, the eigenvalues of 4 ~'B
are

or in simplified form

a=?
u

Since the eigenvalues are real, the character of the governing
fluid dynamic equations is hyperbolic. Therefore, the govern-
ing equations can be solved with a hyperbolic space-marching
scheme.

Solution Procedure

The airflow was computed using a well documented Navier-
Stokes code adapted from the original program developed
by Shang.!* The MacCormack finite-différence algorithm is
utilized and the program is optimized for a vector processor.'®
Also, the hyperbolic grid generator of Steger and Sorenson'? is
used as discussed previously.

The computation of the droplet trajectories is computed
using technology developed for the PNS-solving schemes. As
noted before, the droplet equations are hyperbolic since the
stress-tensor vanishes for this model. (No collisions between
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droplets are considered in the formulation and, hence, no pres-
sure or shear terms are present.) The governing equations are
transformed into a - computational domain and take on the
following form:

PV 0 p,U
u, —u
Ppu,,V = p_P(_P__) — P,,u,,U
Ty
pp@, —v)
PotpV | 'L_TPJ__ PRU| ¢

where the contravariant velocity components are represented
as

U=yu,—xp,

V= x, —y:u,

X X _ 4

= 3CpRe u

n

yé yn

Jt=

The upstream boundary conditions are:

p(00) =LWC
U(00) =V
v,(0)=0

Given the air velocity components (u,0) from the solition of
the airflow equations, the droplet equations are marched in the
n direction inward toward the body. After attaining the body
surface, the values of u,, U,, and p,, are recorded from which the
local impingement efficiency f may be determined.

Local Impingement Efficiency

The impingement efficiency of an icing shape is a measure of
its ability to intercept incoming droplets.” The impingement
efficiency B at any point is the ratio of the actual mass flux of
droplets impacting that point divided by the freestream incom-
ing mass flux of droplets. Equivating mass fluxes produces a
relationship for f:

BLWO)V .dy = (p,V, - ndd),

where
V,=iu, +jv,
nd4 =idy — jdx
Thus
B=< Py ) [updy—vpdx]
LwC/, V.dy "
But
% = tanf

hence

g = Py u, — v, cotf
LwWC/, Ve "

A dimensional analysis of the water droplet equations indi-
cate that the impingement efficiency is a function of the geome-
try and only one flow parameter K, where

Vot

K,=—2
D
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This single parameter is a type of Reynolds number, taking
into account all flow variables of the problem, and is very
useful for evaluating impingement efficiencies. This term is the
inertia parameter defined by Langmuir and Blodgett'® in their
work on water droplet trajectories.

Nusselt Number

A primary concern is the heat-transfer coefficient at the sur-
face. This value will determine the cooling rate that is the key
to predicting ice accretion. The experimental heat-transfer data
is expressed in terms of local Nusselt number.

hD
Nu="2
"=
where
oT
=kl— ) =NT,-T,
A
Therefore

o7
on ),

Ny = ——~—
(]1 - ]1v)

Results

To assess the validity of the numerical simulation, the heat-
transfer distribution over a smooth circular cylinder under
laminar flow conditions was computed. The numerical results
for the Nusselt number are compared with the exact solution
obtained by Frossling!’ in Fig. 3. This case is for a Reynolds
number of Re,; = 138,000, and a cylinder diameter of 2 in. The
excellent agreement observed establishes the validity of the nu-
merical approach.

Computations were then carried out for the four specified ice
shapes. Results were first obtained using a grid consisting of 60
points in the radial direction and 60 points in the circumferen-
tial direction. For this configuration the circumferential grid
point spacing was in increments of 3 deg from the origin of the
cylinder. Although these results exhibited the proper trends,
they did not provide the desired accuracy. Thus, in an effort to
improve the accuracy, grid refinement was incorporated into
the upstream quadrant of the computational domain. This was
accomplished by reducing the circumferential grid spacing to
increments of 0.5 deg. This resulted in excellent agreement be-
tween the computed flowfield and experimental data.

As noted previously, one of the important aspects of the ice
accretion phenomena is the heat-transfer process. Hence, the

L Re = 138,000
500
U, = 130 FT/SEC
D = 2.0 INCHES
w
q
P | L]
n 300 °
=
2
-
o ..
a0 =~ FROSSLING
2 ©  COMPUTED
100 [~
1 ! 1 1 ] |
0
0 10 20 30 40 50 60

THETA DEGREES

Fig. 3 Comparison of Frossling solution and computation of Nusselt
number.
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computed Nusselt number is compared with the experimental
data of Van Fossen et al.® for the four prescribed ice shapes,
ie., 2, 5, and 15-min glaze and 15-min rime ice cases. The
computed Nusselt number for the 15-min glaze ice shape gives
excellent agreement with experimental data from the stagna-
tion point to approximately 35 deg (Fig. 4): This point corre-
sponds to the peak or tip of the ice horn. Beyond this point a
region of separated flow develops and, as a result of the oscilla-
tory nature of the separation, large fluctuations in the instanta-
neous value of the Nusselt number are observed. The exact
solution for Nusselt number over a circular cylinder is also
shown in Fig. 4 for reference purposes. The features of the
separation are also apparent upon examining the velocity vec-
tors for the computed flowfield. Figure 5 shows the velocity
vectors for the 15-min glaze shape at two different times. The
large region of separated flow appears just beyond the tip of
the horn (Fig. 5a). This recirculation region stretches and
moves downstream with increasing time (Fig. 5b). The temper-
ature at one grid point off the surface is shown in Fig. 6. The
fluctuation in the temperature downstream at the tip of the ice
shape can be attributed to the unsteady nature of the separated
flow in this region.

Similar features are observed for the 2- and 5-min glaze ice
shapes, although to a lesser degree than for the 15-min glaze. In
analyzing the Nusselt number for these cases, it has been ob-
served that there is a large amount of scatter in the experimen-
tal data’, however, this comparison of the general trends
(especially in the vicinity of the stagnation point and the tip of
the ice horn) is in good agreement. The data comparison for
the Nusselt number for the 2- and 5-min glaze configurations
are shown in Figs. 7 and 8, respectively, The velocity vectors
for the 5-min case are shown in Fig. 9. The figure reveals how
the region of flow separation depends on the size of the ice horn
shape. In the case of the 2-min glaze, the size of the ice is still
quite small and has virtually no horn associated with it. Hence,
there is very little separation present. For the 5-min glaze ice
shape, a discernible horn has started to form and the region of
separated flow has become quite visible, thus showing the
growth progression toward the 15-min glaze shape.

The flow characteristics about the 15-min rime ice shape are
quite different. Figure 10 shows the velocity vectors for this
shape and indicates that no flow separation is present. The
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Fig. 4 Computed Nusselt number for 15-min glaze.
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computed Nusselt number for this shape shows a peak near the
tip that appears to coincide with the experimental results (Fig.
11). :

Figure 12 shows the computed path lines for water droplets
for 10-m-diam flowing around a 2-in.-diam cylinder in
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potential flow with a freestream velocity of 130 fps
(K, =0.476). Figure 13 depicts the computed impingement
efficiency for several values of X,

Summary

An analysis of the flowfield, composed of air with small
water droplets, encountered during ice accretion of cylinders
has been accomplished. The method utilizes the numerical
solution of the Navier-Stokes equation to predict the airflow
over complex ice geometries.

A marching code, based on the parabolized Navier-Stokes
formulation, is used to compute the water droplet trajectories
and resulting droplet impingement efficiencies. Good agree-
ment is obtained with the experimental heat-transfer distribu-
tions for a series of ice shapes.
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